(X^3-4x)/x^2+4=0

Simple and best practice solution for (X^3-4x)/x^2+4=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (X^3-4x)/x^2+4=0 equation:


D( x )

x^2 = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

(X^3-(4*x))/(x^2)+4 = 0

(X^3-4*x)/(x^2)+4 = 0

(X^3-4*x)/(x^2)+(4*x^2)/(x^2) = 0

X^3+4*x^2-4*x = 0

(X^3+4*x^2-4*x)/(x^2) = 0

(X^3+4*x^2-4*x)/(x^2) = 0 // * x^2

X^3+4*x^2-4*x = 0

X^3+4*x^2-4*x = 0

DELTA = (-4)^2-(4*4*X^3)

DELTA = 16-16*X^3

16-16*X^3 = 0

-16*X^3 = -16 // : -16

X^3 = 1

X^3 = 1 // ^ 1/3

X = 1

DELTA = 0 <=> t_3 = 1

x = 4/(2*4) i X = 1

x = 1/2 i X = 1

( x = ((16-16*X^3)^(1/2)+4)/(2*4) or x = (4-(16-16*X^3)^(1/2))/(2*4) ) i X > 1

( x = ((16-16*X^3)^(1/2)+4)/8 or x = (4-(16-16*X^3)^(1/2))/8 ) i X > 1

X-1 > 0

X-1 > 0 // + 1

X > 1

x in { 1/2, ((16-16*X^3)^(1/2)+4)/8, (4-(16-16*X^3)^(1/2))/8 }

See similar equations:

| (1.07)-12= | | n=0.0625 | | 14a=b | | b=14a | | 9(6+x)-2x=-10 | | 20=x+y | | 2x^2-12x=15 | | .4285714w^2-9w+6=0 | | (9u+1)/5=((5u-5)/6)+(2) | | a=1/2*40(60+120) | | (9u+1)/5=(5u-5)/6+(2) | | n/9=m | | 7p-3q=-28 | | 8=(2x-5) | | 5/7x=-45 | | 7a^2+8a+1=0 | | 4/5y^2+8y=12 | | N+15-35=IV | | .8y^2+8y=12 | | -109x=9 | | N+15-35=N | | .25q+169=61 | | .25q+.05n=8.45 | | 3x^2-13x-24=0 | | 4x+3x-9=0 | | a-b=12 | | m^2=-6m-7 | | 6u-12=18 | | 15-4x-(12-6x)= | | f/11=7 | | Y=7x^2+2-120 | | 10x-7=7x-16 |

Equations solver categories